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Abstract

The computational complexity of algorithms for Four DimensionalData Assimi-
lation (4DDA) at NASA's Data Assimilation Office (DAO) is discussed. In 4DDA,
observationsareassimilated with the output of a dynamical model to generatebest-
estimatesof the statesof the system. It is thusa mappingproblem,wherebyscattered
observationsare convertedinto regular accuratemaps of wind, temperature, mois-
ture and other variables. The DAO is developingand using 4DDA algorithms that
provide these datasets, or analyses,in support of Earth System Scienceresearch.
Two large-scalealgorithms are discussed. The first approach, the Goddard Earth
Observing System Data Assimilation System (GEOS DAS), usesan atmospheric
general circulation model (GCM) and an observation-spacebasedanalysissystem,
the Physical-spaceStatistical Analysis System (PSAS). GEOS DAS is very similar
to global meteorologicalweather forecastingdata assimilation systems,but is used
at NASA for climate research. Systemsof this size typically run at between1 and
20 gigaflop/s. The secondapproach, the Kalman filter, usesa more consistent al-
gorithm to determine the forecast error covariancematrix than doesGEOS DAS.
For atmosphericassimilation, the gridded dynamical fields typically havemore than
106variables, therefore the full error covariancematrix may be in excessof a tera-
word. For the Kalman filter this problem caneasily scaleto petaflop/s proportions.
We discussthe computational complexity of GEOS DAS and our implementation of
the Kalman filter. We also discuss and quantify someof the technical issuesand
limitations in developingefficient, in terms of wall clock time, and scalableparallel
implementationsof the algorithms.



1 Four Dimensional Data Assimilation

Four Dimensional Data Assimilation (4DDA) is the process of combining observations
with a dynamical model to generate a gridded best estimate, or analysis, of the state
of the system (Daley 1991). It is thus a mapping problem, whereby scattered obser-
vations are converted into accurate maps of wind, temperature, moisture and other
variables. This is shown schematically in Figure I. The model propagates in time the
estimate of the state, e.g., for the global atmosphere we use a general circulation model

(GCM). The analysis is a statistics-based algorithm for combining the model output,
or forecast, with observations to produce the best estimate state (the expression "anal-
ysis" is used in a context dependent manner to refer both to the algorithm for data as-
similation and the resulting dataset). This is a cycled algorithm whereby the analysis
state is used to reinitia]ize the model, and so on. 4DDA is used in weather forecasting
to initialize model forecasts, for example, at the National Centers for Environmental

Prediction (NCEP) (Parrish and Derber 1992, Parrish eta]. 1997), and at the Euro-
pean Center for Medium-Range Weather Forecasts (ECMW_F) (Courtier et al. 1998,

- Rabier eta]. 1998, Andersson eta]. 1998). 4DDA is also used to perform reanalyses of

past datasets to obtain consistent, gridded, best estimates of the state variables of the
atmosphere (e.g., wind, temperature, moisture ...), for example, at NASA's Data As-
similation Office (DAO) (Schubert et al. 1993, 1995), at NCEP (Kalnay et al. 1996,
Kanamitsu eta]. 1999, Kistler et al. 2000), and at ECMWF (Gibson et a] 1997).
These gridded reana]ysis datasets are a valuable resource for the Earth Science re-
search community (DAO 2000). The DAO develops and uses software for scientific
research on methodologies for data assimilation; to run as production 4DDA systems
and provide background gridded fields in near real-time support of satellite and air-
craft missions; and to run as 4DDA scientific reanalysis systems in support of Earth
S_ience research. Input atmospheric observations may be a combination of wind,
height, moisture and other constituent gas variables from conventional surface and
balloon instruments, plus processed observations, or retrievals, from satellite-borne
instruments. The observations and the system that manages them daily by the World
weather Watch under the World Meteorological Organization are described in the re-

view article by Atlas (1997), and some parameters of the observation datasets and
analysis fields are described in Section 2.3.

This paper discusses the computational complexity of two important 4DDA algo-
rithms in use at the DAO. The first is Goddard Earth Observing System Data

Assimilation System (GEOS DAS) which uses a grid-point based atmospheric gen-
eral circulation model (GCM) and an observation-space based analysis system, the
Physical-space Statistical Analysis System (PSAS). GEOS-DAS is very similar to
global weather forecasting algorithms, where the analysis fields are used to initialize
the GCM for a model forecast. In order to obtain an accurate analysis it is impor-

tant to determine the appropriate balance between forecast and observations. This

is achieved through the use of forecast and observation error covariance matrices Pf

and R respectively. The PSAS uses modeled error covariance matrices whose param-
eters are determined from prior statistics with appropriate simplifying assumptions
such as stationarity (Daley 1991). Global 4DDA systems such as GEOS DAS with

model grids of the order I00 km have about 106 variables. Whether they are used
for real-time weather forecasting or to create archive analysis files for research they

typically run between 1 and 20 gigaflops/s on parallel computers. The software for
the developmental and operational GEOS DAS is constantly changing. In this paper
we will provide detailed timings for the baseline shared-memory multitasking parallel
GEOS-2 DAS, along with discussion of the scalability for higher-resolution and oth-
erwise modified software. The second algorithm is the Kalman filter, which offers the



promise of more accurateanMysesbecauseit evolvesP/in a dynamically consistent

manner. However P/ is of dimension the square of the number of model variables,

so the algorithm could easily scale to petaflop/s proportions. A two-dimensional
(latitude-longitude) Kalman filter for the assimilation of constituent gas mixing ra-
tio in the stratosphere was developed by our group as a prototype and research tool
(Lyster et al. 1997, M_nard et al. 2000a, b). Some of the results of this work are
used to extrapolate to the complexity of a full Kalman filter With three-dimensional
meteorological fields.

Where appropriate, estimates of actual floating point counts are calculated; however
where this is too difficult or vague we simply specify the order (9 scaling. The com-
putational complexity of different algorithms cannot be compared without careful
specification of the spatio-temporal problem domaffis. In this I_aper we will state
when we use two- or three- spatial dimensions. We use the notation [0, T] to specify a
fixed time interval. Beyond these, the computational complexity depends on a com-
bination of numerical and physical parameters, including the number of gridpoints
in the model (n), the number of observations in an assimilation cycle (p), as well as
numerical parameters defined in the text. The GCM and PSAS have tightly-coupled
core algorithms with computational and communication-intensive parallel implemen-
tations; these are hydrodynamic transport (GCM) and non-sparse large matrix-vector
multiplications (PSAS). Technical issues and limitations in developing efficient, in
terms of wall clock time, and scalable distributed-memory parallel implementations
of the GCM and PSAS, and by extension GEOS DAS, will be discussed in Section 4.

This paper does not address the issue of software complexity. This is emerging as a
key issue because of the need to build extensible, maintainable, and reusable code, and
because of the difficulties in managing large software projects - the core OEOS DAS
algorithm is in excess of 150,000 lines of code and is being used and modified by about
I00 g_gff _eYnbers. See doch_nentati6h off the DAO Omce-Note pgges (DAO 2000),
in particular to papers by Guo et al. 1998, and Larson et al. 1998. We will also

not discuss in depth the end-to-end distributed heterogeneous computing system (in
excess of i00,000 lines of code) that pre- and post-processes observational data and
gridded data. See the DAO web pages and the DAO Algorithm Theoretical Basis
Document (DAO 2000). Finally, centers such as NCEP and ECMVVF have three and
four-dinaensional data assimilation systems (3DVAR and 4DVAR) in their software
suites. The computational complexity of GEOS DAS is similar to that of 3DVAR;
however, the complexity of 4DVAR is very different and is not discussed here.

2 Goddard Earth Observing System Data Assimilation System
(GEOS DAS)

Derivations of analysis algorithms abound (Daley 1991). W_e will motivate briefly and
derive the analysis equations for GEOS DAS based on a "statistical least squares ap-
proach. Cohn (1997") places this discusion in the context of general filtering methods.
The optimal estimate of the state is the -'_v_,m_.... u_ the control variable w that minimizes
the cost function J:

1 /
J(w) = [[(w - - + (w° - Hw)TR- ( ° - Hw)] (1)

where

• w is the control vector of state variables (C _'_, i.e., an n vector).
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• w f is the state forecast (C ff_n, i.e., an n vector).

• w ° is a vector of observations (C _P, i.e., a p vector).

• P] is the (n × n) known forecast error covariance matrix.

• R is the (p × p) known observation error covariance matrix.

• H is the (here linearized) forward operator that models the observations by act-
ing on the state vector (e.g., if the observations come from direct measurements
of the state then H can be implemented by interpolation from the state grid to

the observation locations).

The value of w that minimizes Y is:

where the Kalman gain is

wo = ws + K(wo- Hw ), (2)

K = pIHT(HPfH T + R) -1 • (3)

CEOS DAS uses a six-hour window [0, 6hr] for the cycle that is shown schematically
in Figure 1. Starting from a prior analysis, the GCM generates a forecast by iterating
a timestepping algorithm:

wf+l = .A4kw_, (4)

wl_ere k is a time index and .h/fk is the model operator. By convention (e.g., Daley

1991, DAO 2000), the forecast for each data assimilation cycle ends at (0,6, 12, 18)
-hu_rs CMT. GEOS DAS evalu_t_ Eqn. (2) for each of thege-_ix-hourly forecasts

_using data that are accumulated +/- 3 hours (i.e., evenly) about the forecast time.
• .Operational algorithms at weather centers and laboratories (Daley 1991) have more

constraints and attributes than the simple form of Eqns. (I), (2), and (3). Indeed

GEOS DAS uses a slight modifiction of the cycling method just described, which in-
volves nine hours of model iteration for six-hourly each data assimilation cycle (Bloom

et al. 1996). However, these caveats do not substantially modify the evaluation of
computational complexity in the present work.

2.1 The Computational Algorithm for GEOS DAS

We describe the complexity and timing profile for a baseline version GEOS-2 of the
GEOS DAS. The GEOS-2 GCM (Takacs et al. 1994) comprises a spatial fourth-order-
accurate finite-difference dynamical core to model hydrodynamical processes, plus

physics components for moist convection, turbulence, and shortwave and Iongwave
radiation. The state, or prognostic, variables are horizontal winds, potential tem-

perature, specific humidity, and surface pressure. There is also capability to mode]
an arbitrary number of passive tracers. A high-latitude spectral filter and a global
Shapiro filter and polar rotation algorithm provide smoothing and numerical stabil-

ity. CEOS-2 GCM used a baseline model resolution of 2 ° longitude, 2.5 ° latitude,
and 70 vertical levels. This corresponds to three-dimensional fields with horizontal
resolution 91 gridpoints in latitude and 144 gridpoints in longitude. GEOS-2 GCM
uses a multiple time scale computational technique (Brackbill and Cohen 1985). The
dynamical core has the smallest timestep of 3 minutes at baseline resolution. The
physics components generate time tendencies at longer intervals: moist convection I0
minutes, turbulence 30 minutes, shortwave radiation 1 hour, and longwave radiation
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3 hours. These tendenciesare applied to the state variables incrementally at the
shortest timescale (3 minutes). Fuller details are describedin Takacset al. (1994),
and the next Sectionswill discussthe complexity and timing profile of the GCM in
the context of the whole data assimilationsystem. The numberof state variables at
the baselineresolution is approximately n _ 3 × 91 x 144 x 70 +91 × 144 _ 2.6 x 106,
corresponding to the 3 upper-air (i.e., three-dimensional) field arrays and 1 surface
(i.e., two-dimensional) field array, although in practice up to 14 upper-air field arrays
are carried by the algorithm.

Currently, the GCM is run with 1° x 1° x 48 levels, and developmental versions achieve
even higher resolution. An extensive land-surface model with associated prognostic
variables has also been implemented in the GCM, but we will not include that in the
baseline numbers. The actual resolution is not critical to this paper, which discusses
scaling properties starting from the baseline resolution of the GEOS-2 DAS. Note also
that this is not the same mode] as the finite-volume fvGCM that is being developed for
the new generation data assimilation system at the DAO. Between these two GCMs
some general quantities, such as asymptotic scalability, may be similar but specific
values of quantities like the model timestep or wall-clock time of runs are different.

The algorithm for solving Eqn. (2), i.e., the analysis in Figure I, is the Physical-space
Statistical Analysis System (PSAS) (Cohn et al. 1998). This solves:

(HP/H T ÷ R)x --- w ° - Hw:, (5)

and

w a - w y = p:HTx. (6)

The time subscript k will be dropped where it is not important to the discussion.
The right hand side of Eqn. (5) is sometimes called the "observed minus forecast

residual" or the "innovation", and H.P:HT+ R is called the "innovation matrix". To
generate the analysis fields at the end of each six-hourly cycle, GEOS-2 DAS adds

the "analysis increment" w a - w: incrementally to the state variables in a similar
way as the physics tendencies are applied as described above (Takacs et al. 1994,

Bloom et al. 1996). The error covariance matrices P: and R are implemented us-

ing models for variances and correlations whose parameters are Obtained from prior
statistics and simplifying assumptions such as stationarity (Daley I991, DAO 2000).
Sophisticated multivariate formulations are used to improve the quality of the analy-
sis (Guo et al. 1998). Although this has significant impact on the software complexity
(Larson et al. 1998) it has only a secondary impact on the computational complexity

and will not be considered here. The resulting matrices HPfH T ÷ R and P:H T

are in principle dense, however correlation models with compact support (Gaspari
and Cohn 1999) are used, which reduces the computational complexity by setting
the correlation to zero beyond a fixed length. As described above, Eqns. (5) and (6)
are solved for data that are aggregated over six-hourly intervals. This interval will be
shortened to make better use of asynoptic observations (e.g., retrievals from satellites)
and accommodate shorter temporal and spatial scales of high-resolution GCMs, but
the numbers in this paper refer to baseline GEOS-2 DAS with a six-hour analysis
interval. For atmospheric assimilation there are typically p _ 10_ observations that

are made world wide in this interval. The PSAS consists of solving one p × p linear
system (Eqn. 5) for the intermediate vector x using a parallel nested-preconditioned
conjugate gradient solver (Cohn et al. 1998, Golub and van Loan I989, PSAS 1998).
Machine-precision solutions for x are not required because the analysis increment

w _ - w / is a first order error statistic. From experience, we find that _ _ 10 itera-
tions of the outer loop of the solver provides a satisfactory solution; this reduces the
residual of the solver by about an order of magnitude.



2.2 The Computational Complexity of GEOS DAS

We will not calculate the actual floating point operations of GEOS-2 GCM, but rather

note here the properties of scaling with respect to spatial and temporal resolution
(Takacs 1997). In Section 2.3 we will tabulate the timing profile of components of
the GCM in the context of the whole data assimilation system, and then in Section

4 make some general comments about the parallel scatability of distributed-memory
parallel implementations of grid-point GCMs, the PSAS, and GEOS DAS. First, we
specify separately the number of gridpoints in the longitude, latitude, and vertical
coordinates as n_, ny, and nz respectively (i.e., n = nxn_n_). The complexity of
all four of the dynamics, moist convection, turbulence, and radiation components
scale as O(n_ny). In any fixed interval [0, T] the complexity of the dynamics has
an additional dependence on the number of timesteps. Generally the number of

timesteps of the dynamics, i.e., the temporal resolution, increases in proportion to
the horizontal resolution, n_. As the update interval of the physics components is
shortened there will be an additional impact on complexity (Takacs 1997). The

*complexity of the dynamics, moist convection, and turbulence components scale as
2 Asymptotically, for a fixed time interval theuz, while the radiation scales as n_.

complexity of-the dynamics scales as 0(n4/3). Thus, if the resolution of the GCM is
doubled in all three dimensions the complexity of the dynamics increases sixteen fold.
-The memory requirement for the GCM scales as n; thus the memory requirement

in general scales less rapidly than the computational complexity. These asymptotic
calculations help specify the size of computing requirements in a ten year or longer
timeframe, however they can be misleading when applied to real developmental or
production software in use today where, for example, there may be parameter regimes
where the timestep does not need to be reduced in proportion to the horizontal
resolution. In this case, it is important to instrument and generate timing profiles of

the algorithms (Takacs 1997). The next section will present the timing profile for the
GEOS DAS and its compoflents. " -

F6} the PSAS, the solver, Eqn. (5), has complexity fA/'isp 2, where s _ 0.40 is the
density (fraction of non-zero elements) of the innovation matrix resulting from the
use of a correlation function with compact support of 6000 km. The factor f equals

two plus the number of floating-point operations required to form each element of
the matrix. The baseline version of the PSAS in GEOS-2 re-calculates the matrix

elements using pre-calculated lookup tables during the conjugate gradient iteration
cycle thus reducing the overall memory requirement and allowing for scalability to
larger numbers of observations beyond the current values (Guo et al. 1998, Larson et
al. 1998). Therefore f may be as high as 10, but for cache-based computers (i.e., the
majority of modern parallel computers) the exact value depends on the optimization
of the access to the tables (Lyster et al. 2000b). The complexity of the preconditioners
are neglected here. Eqn. (6) evaluates the analysis increment, and this has complexity
fsnp. The analysis increment is evaluated on a 2.5 ° × 2° × 14 level grid and these
fields are interpolated to the model GCM grid. For the baseline GEOS-2 DAS this
means that the vertical coordinate systems are interpolated from 14 to 70 levels. Note
that because the GCM and PSAS use different resolution grids the values of n are

context-dependent in the complexity formulae.

The baseline GEOS-2 DAS used a six-hour analysis cycle (Figure 1), with p _ 105

observations accumulated evenly about the analysis time, as described above. The

analysis cycle can be made shorter, potentially leading to a more accurate algorithm,
and this is an area of ongoing research. In Section 3 this will be discussed in the
context of the Kalman filter. For now, note that as the analysis cycle 'time is re-

duced the computational complexity of the analysis Eqn. (6) for the interval [0, 6hr]
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remains fixed at fsnp. However, for this fixed interval the complexity of the solver,

Eqn. (5), will be reduced to approximately .hftfA/'is(p/j_) 2 = f.h/_,sp2/.h/'t, where Aft is
the number of analysis cycles in [0, 6hr]. Thus, if the analysis cycle time were reduced
to the three minute timestep of the model dynamics for baseline GEOS-2 GCM, the
complexity of the ana!ysis solver would be reduced by a factor of Aft = 120. In the

following section we show that for the baseline GEOS-2 DAS, the implementations
of Eqns. (5) and (6) contributes to the computational complexity of the PSAS in
the ratio 35:62. Thus reducing the analysis cycle time can reduce the overall com-
plexity significantly, but the steady, inevitable increase in the number of available
observations will counteract this.

2.3 The Timing Profile of GEOS DAS

The baseline GEOS-2 DAS uses shared-memory multitasking parallelism on Cray J
series and SGI Origin computers. The technical issues and limitations in developing
efficient, in terms of wall clock time, and scalable distributed-memory parallel imple-
mentations of the GCM and PSAS, and by ex_lension GEOS DAS, will be discussed

in Section 4. In this section we discuss the timing profile of shared-memory parallel
GEOS-2 DAS.

Table I shows the percentage of time taken by the top-level components of the baseline
GEOS-2 DAS run on 8 processors of an SGI Origin 2000. Note that the time taken for
the DiaKnostics involves the CPU time to accumulate and process three-dimensional
arrays and the time to write data to disk. The Interface time accounts for the input
and inital processing of the 09 .._ 105) observations, plus the Quality Control com-
ponent, which culls a priori unreliable observations (e.g., those observations whose
locations or values are in gross error). The GCM, PSAS, Diagnostics, and Interface
software make substantial use of shared-memory multitasking parallelism. Overall,
_.6% of the _serial time cost o-f-GEOS-2 DAS (i.e., as timed on-a single proce-ssor)
arises from code that is is not parallelized; of this, about half is in the initialization
and data processing components of the PSAS and half is in the Interface. As a check,
given that the Interface has 0.3_ of the non-parallelized component of GEOS-2 DAS,
this should correspond to I00 x 0.003/(0.003 + 0.997/8) = 2.4_ of the time cost of
GEOS-2 DAS on 8 processors, and this is in line with the figure in Table i.

GEOS-2 DAS Component _ Percentage of YVall Clock time II8 Processors of an SGI Origin 2000

GCM 45.

PSAS 39.

Diagnostics 13.5

Interface 2.5

Table I: The percentage of time taken by the components of shared-memory multi-
tasking parallel baseline GEOS-2 DAS. Runs were performed on 8 processors of an
SGI Origin 2000.

Table 2 shows the percentage of time taken by the top-level components of the baseline
GEOS-2 GCM. The GCM is run in "assimilation mode" using the Matsuno timestep-
ping scheme. The times for the dynamics, the Shapiro filter spatial smoother, the
polar rotation, and other grid transformations are bundled into a single component
designated Dynamical Core (Takacs et al. 1994).
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GCM Component Percentage of Wall Clock time

I0 Processors of Cray J90

Dynamical Core 43.

Moist Convection 16.

Turbulence I0.

Radiation 32.

Table 2: The percentage of time taken by the top-level components of CEOS-2 CCM
(vc6.5, Takacs 1997). Although these numbers are for 10 processors of the Cray J90,
they do not differ significantly from the baseline 8 processors on the SCI Origin 2000.

The percentage of time taken by the top-level components of the baseline GEOS-2
PSAS is shown in Table 3. The solver (Eqn. 5) with complexity f.hfisp 2 takes about
35% of the time while the analysis (Eqn. 6) with complexity fsnp takes 62% of
the time. These expressions for complexity can be checked approximately by taking
the nominal values, f = 10, p = I0 s, n = 106 , A/i -- I0, and s = 0.4. Each of
the expressions equals 4 x 10 It, i.e., the estimated count of floating-point operations
for the PSAS is 8 x 1011 per analysis. This compares with 5 x 1011 floating point
multiplications and 4.5 × 1011 floating point additions for the total complexity of

GEOS-2 DAS (including the GCM, PSAS, Diagnostics, and Interface) per analysis
obtained from the Cray J916 Hardware Performance Monitors. The estimate for the
PSAS is high but a good order of magnitude; Table i indicates that 39/100 x 9.5 x 1011

3.7 x 1011 is more like the actual number of flops per analysis for the baseline
GEOS-2 PSAS.

PSAS Component Percentage of Wall Clock time

8 Processors of an SCI Origin 2000

Solver (Eqn. 5) 35.

Analysis (Eqn. 6) 62.

Utilities 3.

Table 3: The percentage of time taken by the top-level components of the baseline
GEOS-2 PSAS.

The GEOS DAS is run in a number of production modes (Stobie 1996). These may
be generally categorized as real-time, near real-time, and reanalysis modes. Real-time
requires model forecast and analyses to take place sufficiently in excess of one day of
assimilation per wall-clock day so that the results may be studied and disseminated
to customers such as satellite instrument teams with real-time needs. Reanalyses
are multi-year studies designed to provide long-term datasets from a frozen scientific
software configuration. For example, the DAO has completed a reanalysis for the

years 1979 to 1995 using the GEOS-1 version of GEOS DAS (Schubert et al. 1993,
1995). Appendix A summarizes the baseline GEOS-2 DAS system performance and
throughput. GEOS-2 DAS uses shared-memory multitasking parallelism and runs
on Cray J90/C90 and SGI Origin 2000 computers. For GEOS DAS, the DAO now

uses distributed-memory parallelism with the Message-Passing Interface (MPI) and
shmem libraries (Lyster 2000a).
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The data acquisition and storage system for 4DDA involves a worldwide instrumenta-
tion, telecommunication, databasing, computational and administrative effort (Atlas
1997). We remark here only on the attributes and numbers that are relevant to the
present work. In the last 60 years about 2 billion observations that are appropriate for
input to atmospheric data assimilation systems have been accumulated. The volume
of these data does not present the greatest computational complexity, and operational
centers are more concerned with the accuracy of these data. Considerable energy is
devoted to finding and validating old observations, i.e., "data rehabilitation". In the
coming years, diverse new data types will be made available for data assimilation, and
the volume and complexity of the data handling system will increase considerably.
For example, satellite sea-surface wind observations have been shown to be useful

in increasing forecast accuracy of weather analyses (Atlas et al. 1996). The DAO
will also assimilate increasing amount of non-meteorological data, such as trace gase
concentration in the atmosphere. During the late 1990s, when GEOS-2 DAS was the
main operational data assimilation algorithm at the DAO, about 105 observations
were produced daily under the W'orld Weather Watch and transmitted to worldwide
weather centers and the DAO via the Global Telecommunications System, which is

under the supervision of the "World Meteorological Organization (Atlas 1997). More
than 70_ of these were obtained from satellites measurements, mostly as temperature
retrievals; the remaining were from in situ balloon-borne and land and sea surface
instruments. At baseline resolution for the GEOS-2 GCM (2 ° x 2.5 ° x 70 levels), a
day of assimilation produced in excess of I gigabyte of data. Hence data assimilation
at real time (one day of assimilation per wall-dock day) did not stretch the local disk
capacity or bandwidth of most modern computer systems. However, extended runs at
higher throughput than real time increases the burden on storage and data process-
ing. The most severe challenge is for reanalysis projects where multi-year datasets are
analyzed by a fixed Data Assimilation System and the products are made available to
the scientific community. The standard benchmark is a rate of 30 clays of assimilation
per day of wall-clock time (i.e., a fifteen year reanalysis on order half a year). At this
rate the GEOS-2 DAS produced about 10 terabytes of data per year.

3 The Kalman Filter

The Kalman filter (Jazwinski 1970, Cohn 1977) assimilates observations sequentially
with the model at the corresponding time (tk) when they are taken. In this regard,
it is like the PSAS with a shortened analysis update cycle:

= + Hkw ), (7)
where the Kalman gain is

= pfHTIr_r Dfr..rTKk k k  1,kl k l"k + Rk) -1 (8)

where sk observations are assimilated at time tk. For the Kalman filter analysis the
cycle also involves both a model forecast

f a%+1 = Mkwk, (9)

and a dynamically consistent forecast of the state error covariance matrix

P[+I = MkP_ MT + Qk, (10)

where Mk is the tangent-linear model operator, and Qk is the model (or system) error
covariance matrix. The analysis error covariance matrix at the new time tk+t is

Pk+la = (I - Kk+IHk+I)P/_+I,I (11)
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where I is the identity matrix. The filter then proceeds sequentially in time through

repeated iterations of Eqns. (7)-(II).

A two-dimensional (latitude-longitude) Kalman filter for the assimilation of strato-
spheric chemical constituents was developed by Lyster et al. (1997), and is being used
for scientific study of stratospheric constituent gases (M_nard et al. 2000a,b). The
dynamical model uses advective transport with a grid-point based flux-conserving

algorithm (Lin and Rood 1996). The transport is driven by prescribed winds from
GEOS DAS. For example, at a 2° x 2.5 ° resolution the number of grid points is
n = 91 x 144 = 13104 and the model timestep is 15 minutes. This was used for
the assimilation of retrieved methane from the Cryogenic Limb Array Eta]on Spec-

trometer (CLAES) instrument aboard NASA's Upper Atmosphere Research Satel-

lite (UARS). For CLAES, there were typically pk _ 15 observations, per layer, per
timestep. The Kalman filter achieved 150 days of assimilation per wall-clock day, or
4.1 sustained gigaflop/s, on 128 processors of the Cray T3E-600 at NASA Goddard
Space Flight Center. Figure 2 shows a still from a video (NASA ESS 1997) using grid-
ded output from the Kalman filter and produced for a study of a tropical atmospheric
wave-braking event in the stratosphere. The visualization employed Vis5D to render
isosurfaces of constant mixing ratio of methane to depict the three-dimensional struc-
ture and evolution of the stratosphere. The assimilated observations from CLAES
covered the interval September 6-14, 1992. The experiments had 18 vertical levels
in the atmosphere, and the horizontal resolution Was 5 ° x 4 °. The vertical grid was
generated by the assembly of 18 layers, each representing a two-dimensional assimi-
lation experiment. The time taken for the 8 day runs was 20 hours of wall-clock time

on 128 processors of the GSFC Cray T3D.

For the grid-point based horizontal transport that is used for the two-dimensional
Kalman filter, the complexity of a single timestep of the model, Eqn. (9), is hn, where
h_ I0 - I00 takes into account the size of the finite-difference template. The com-

plexity of Eqn. (I0) is (2h + 1)n 2 per analysis cycle. The Kalman gain, Eqn. (8), may

be evaluated using a direct solver using CO(p_) operations. Alternatively, Eqns. (5)

and (6) may be employedl their computational complexity was discussed in Section
2.2; however, this method does not generate the Kalman gain Kk explicitly. The com-
plexity of Eqn. (11) is approximately (pk + l)n 2. For the GEOS-2 DAS, observations
are aggregated over a six-hourly interval. As described above, the value of pk for the
Kalman filter is smaller than for the GEOS-2 DAS by the number of model timesteps
in 6 hours. At baseline resolution for the GCM (2 ° × 2.5 ° x 70 layers) the timestep of

the dynamics is 3 minutes, so Pk is 120 times smaller than for the PSAS. Only small
experiments (e.g., Pk _ 103) could afford to evaluate /(k directly. A Kalman filter
or an approximate Kalman filter for a large-scale multivariate meteorological system

would have to use an iterative solver, such as the PSAS. The matrices .P/'_ are of size

andHkP/H[ + Rkis ofsize

A Kalman filter based on a tangent-linear three-dimensional-GC, M would require con-

siderably more resources than the filter described above for stratospheric analyses.

The memory to store the error covariance matrices, pf,a, would be approximately
n 2 _ 6.8 x 1012 words at the baseline resolution of 2° x 2.5 ° x 70 levels, and the

algorithm, based on the complexity of just Eqn. (Ii), would scale to approximately
n x 250 megaflop/s -- 0.25 petafiop/s (the value 250 megafiop/s is taken from the
baseline GEOS-2 DAS in Appendix A). This is clearly beyond the reach of current
resources. GEOS DAS, with an analysis based on PSAS, is an approximate Kalman
filter. Efforts are under way worldwide and at the DAO to develop computation-
ally feasible improvements to 4DDA algorithms, such as reducing the analysis cycle
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time for GEOS DAS, and developingmore physically-basederror covariancemodels
(Riish_jgaard 1998).

4 The Scalable Distributed-Memory Parallel GEOS DAS

The GCM and PSAS have tightly-coupled core algorithms with computational and
communication intensive parallel implementations; these are hydrodynamic trans-
port (GCM) and non-sparse large matrix-vector multiplications (PSAS). The base-
line GEOS-2 DAS uses shared-memory multitasking parallelism on Cray J series
and SGI Origin computers. A distributed-memory parallel implementation of the
GCM was designed (Lyster et al. 1997) and prototyped (Sawyer and Wang 1999) us-
ing the Message-Passing Interface (MPI) and shmem libraries. Distributed-memory

parallel PSAS was iS_b-totyped (Ding and Ferraro 1995), and an MPI PSAS kernel
was developed (Guo et al. 1998, Larson et al. 1998). During the year 2001 devel-
opment and validation of distributed-memory parallel GEOS DAS was completed.
The following sections discuss technical issues and limitations related to scalable
distributed-memory parallel implementations of the GCM and PSAS. _re will focus
on the tightly-coupled core hydrodynamic transport and non-sparse large matrix-
vector multiply algorithms. In addition, we will discuss the development of scalable
end-to-end large-scale applications such as GEOS DAS.

4.1 Asymptotic Scalability of Distributed-Memory Parallel Gridpoint Gen-
eral Circulation Models

We calculate the limit on the number of processors that can be usefully employed to
reduce the wall-clock time of a distributed-memory parallel grid-point based transport
algorithm, in the parallel decomposition, compact domains of grid points and their
associated floating-point operations are distributed across processors. The limit on
_h_-ffU_ber of pr-0_b_s is the _egult of-the surfac_-to-v0lume effect (e_g.; Fo_t_¥ 1994
Sec. 2.4), whereby the impact of communication of domain surface data becomes

comparable to the time to perform the floating-point operations of the algorithm.
This is an approximation of the scalability in the sense that it does not account for a
number of the typical complications that often occur in General Circulation Models
(GCM), viz:

We are neglecting the algorithms for parameterized physics processes, which
include moist convection, turbulence, and radiation; the grid transformations;
the diagnostics; and the I/O.

We are not assessing the impact of load imbalance.

We cannot simply account for indeterminacy in communications, such as in
semi-Lagrangian methods.

The embarrassingly parallel parts of the GCM (e.g, some algorithms for parame-
terized physics processes) tend to improve the overall scaling with respect to the
present calculation, while load imbalance will tend to make the scaling worse. Other
components (e.g, the parallel rotation grid transformation) need a separate analysis
(Lyster 2000a and articles therein). The communication of domain surface data en-
ables algorithmic consistency across the boundary between processor domains. The
present calculation is very similar to the estimate of parallel scalability of particle-
in-cell methods by Lyster et al. (1995), except that case involved communication of

11



mobile particles, which representedplasma ions and electrons, acrossgridpoint do-
main boundaries. We assumethat the communication time can be approximated
in terms of the number of bytes communicatedper processorand the bandwidth of
the communication channel (i.e., latency effectsmake the scalability worse, so this
approximation is still good in terms of evaluating an upper bound on scalability).
With this, the following calculation providesa good approximation for the scalability

of the distributed-memory parallel dynamical core.

Define the following symbols:

N, = Total number of processors employed
g= Total number of grid points in the computational domain
d = Dimension of the physical problem
D = Dimension of the parallel decomposition
M = single processor speed in megaflop/sec
B = interprocessor communication bandwidth in megabytes/sec
F = Number of fiops/gridpoint/timestep for the relevant transport algorithm
G = The number of "layers" of guard cells in each dimension of the parallel decom-
position (e.g., G = 2 for fourth order finite difference)
P = The precision of the calculation in bytes per word (i.e., P = 4 or 8)

Typically D = 1, 2, or 3, and d = 2 or 3, while d > D. For instance, the physical
world is three dimensional (i.e, d = 3), however, we sometimes discuss scalability in
terms of the number of gridpoints in the latitude-longitude domain (i.e, horizontal

transport), for which d = 2. In this case the most efficient parallel decomposition uses
compact two-dimensional blocks of gridpoints, sometimes called the "checkerboard"
de-c-6-ffilSosition (D = 2): Th_ fftfmb-ef of gridpoirit_ aroun-d the b6_der of 6geh d6main

1 1

is:then 2DN  -I)/d/N = 2DN /N .

The communication time per timestep per processor is:

-1 (d-1)/d (D-1)/D
T_or_m = 2DGPB N_ /N_ .

The CPU time per timestep per processor is:

T_,_ = (F/M)(NJNp).

Hence the ratio of communication to CPU time is:

2DGP M N I/D
-p

r := T_o_/T_= = F B vl/d"

(12)

(13)

(14)

The parallel speedup (SU) is defined as the time for the application to run on I

processor divided by the time to run on Np processors. W'ith the present assumptions,
we have:

SU = Np/(1 + r). (15)

Therefore we may nominally define the maximum speedup, Npm_, as the number of

processors for which r in Eqn. (14) is equal to i:

Nvm_ BFN_/a D= (16)
2MDGP
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Beyond that, the floating point operations in additional processors are effectively
wasted.

The terms in w may be characterized as follows:

2DaP. Parameters of the algorithm.F

M. Parameters of the computer.• -_-.

lid.• N_ . The problem resolution.

1/D.
• N_ . The surface-to-volume effect (i.e., T gets larger in proportion to the

number of processors to some geometry-dependent exponent).

For parameters typical of current global transport algorithms, Ng = 360 x 181 (i.e.,

l°x 1°resolution), d = D = 2, M = 100, B = 10, F = 50, G = 2, and P = 8, so
Eqn. (16) gives /Vpma_ = 400.

4.2 Asymptotic Scalability of Distributed-Memory Parallel Matrix-vector
Multiply for the PSAS Solver

We calculate the limit on the number of processors that can be usefully employed
to reduce the wall-clock time of a distributed-memory dense matrix-vector multiply.

The dominant time cost of the PSAS, Eqs. (5) and (6), are large, dimension p
105, matrix-wcto_ multiplications. For the ist_g_-fit anMysi_ the results do not differ
significantly between the symmetric (Eqn. 5) or rectangular (Eqn. 6) cases since
the structure of each dimension of the matrix is determined by a compact spatial
decomposition of the multi-dimensional data (see Guo et al. 1998). We will therefore
only show the scaling analysis for the symmetric case. Parallelism is achieved by
assigning subsets of the block matrix-vector multiplications to each processor. The
partial vector results are then summed using the MPI_reduce_scatter() library call
as shown schematically in Figure 3. The cycle of the parallel matrix-vector multiply
is then completed using the MPI_all_gather () library call (not shown in the figure).

Advanced libraries suchas tSLAPACK (van De Geijn, 1997) have custom interfaces
and decompositions to support dense matrix-vector operations. We chose not to use
this because the more general interface of the MPI library is both simple and compat-
ible with the pointer-specified multi-dimensional vectors (Larson et al. 1998). Using
a 6,000 kilometer cutoff length for correlation functions, the matrices are semi-dense
with density s _ 0.4. For the moment, we focus on the limitations on scMabil-
ity due to the trade-off between communications in the MPI_reduce_scatter and
gPI_all_gather(), and the time cost of the sub-block matrix-vector multiplications.
We ignore the costs of the floating point operations in the reduction. As in Section
4.1, we ignore the cost of latency in the interprocessor communications.

Assumingthat the collective NPI communication calls described above are imple-
mented using an efficient method such as recursive halving (Foster 1994, Sec. 1t.2)
the cost of communications is

T_o,,_ = 2(pP/B)(Np - 1)/Np ._ 2pP/B, (17)
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where wehave usedthe samedefinitions asSection4.1, and p _ 105 is the size of the

vector. The CPU time per processor is:

r_,, = f sp2/(NvM), (18)

where, as in Section 2.2, f equals two plus the number of floating point operations
to form each matrix element. The parallel speedup is given by Eqn. (15), and the

maximum speedup is defined in the same way as Section 4.1:

f s;S (19)
----2--P--M"

For typical values for these parameters as defined in Section 4.1 and above, Nma_ =
625fs. If the matrix% precalculated, f= 2, but it may of order 10 when elements
are calculated on the fly. Memory limitations prohibit storing entire matrices, so
current implementations enable a combination of pre-stored and on-the-fly calculation
of matrix elements. The matrix density s _ 0.4, so its clear that the upper limit of
scalability of semi-dense matrix-vector multiplications, and hence the PSAS, is of the
order of thousands of processors for current generation machines and current input
datasets. The value is larger than the upper limit for a GCM because transport
algorithms in the dynamical cores of GCMs are sparse matrix algorithms, which
have more stringent scalability limits due to the surface-to-volume effect described in
Section 4.1.

The calculation thus far presents an upper limit on scalability. We will discuss in the
next section that the non-parallelized code presents a significant limit on the scala-
bility of the end-to-end algorithm through Amdahl's law (1967). We discuss here a
mimber of factors that reduce the sca]ability of the PSAS below the theoretical limit.

First, on large numbers of processors the size of the vector segments are sufficiently
_ffiall that _s_-g_ laten_-y _d sy_h_o_ii-z_tion do_i_t_ the co_-u_i_atiofi-C6St
of:the collective MPI calls. Second, the PSAS has a nested preconditioner which in-
v61ves successively sparser matrix-vector multiplications (Cohn et al. 1998, Larson et

al. 1998). Through Eqn. (19) (i.e., Nw,_ ,-_ s) these will negatively effect scalability.
Third, work load imbalance has a serious impact on parallel scalability. The base-
line MPI PSAS Kernel has an upper limit of 57, 600 matrix blocks, which should be
sufficient to provide a statistically uniform distribution when their work is allocated
across one or two thousand processors (Lyster et al. 2000b). However, these blocks
are of widely differing size because their dimensions depend on the non-repeatable
distribution of observations in geographical areas of the earth. Early versions of the
Kernel used a method for load balancing that based the costs of the block matrix-
vector multiplications on the dimensions of the blocks. This was later augmented,
with only incremental improvement in scalability, by dynamic scheduling and work
scheduling based on statistically tuned cost estimates. The lower curve of Figure 4
(from Lyster et al. 2000b) shows the scaling of the baseline MPI PSAS Kernel in-
cluding the load balancing algorithm for 52,738 observations covering a standard 6
hour analysis cycle. The poorer scaling relative to the above calculation is from a
combination of load imbalance and sparse preconditioners; using s = 0.1 and f = 5 in

Eqn. (19) gives Nv_a_ = 312 which is in line with Figure 4. The lower curve in Figure
4 corresponds to the case of approximately 57,600s blocks. The improved scaling
shown in the upper curve of the figure corresponds to the improved load imbalance
that resulted from a refinementto 92!, 600s blocks. W_hile the scalability is improved
it is clear that the MPI PSAS kernel did not reach the theoretical limit that had

been expected from the above calculation. Apart from our work on load 5alancing
algorithms, we have developed and continue to work on collective parallel algorithms
using optimized commuflicatibn procedures.
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4.3 Scalability of Distributed-Memory Parallel GEOS DAS

The wall-clock time of an application, which is clearly the bottom line criterion for
performance, depends on both the scalability of the parallel algorithms and the sin-

gle processor CPU speed of the algorithms. Indeed, for obvious reasons algorithms
must be designed to achieve the maximum performance with the minimum number
of processors. We have shown that the highly coupled parallel subcomponents of
distributed-memory parallel grid-point GCM and PSAS have upper limits to their
scalability in the range 400- I000 processors on SGI Origin 2000 series and similar
computers. We have also shown, in Tables 1, 2 and 3, that the main subcomp0nents
of the GEOS DAS (D)mamical Core, Moist Convection, Turbulence, Radiation, PSAS
Solver, PSAS Analysis, Diagnostics, and Interfaces) have an approximately flat tim-
ing profile. Thiszneans that a large fraction of 150,000 lines of code are candidates
for single processor optimization - a significant software effort.

In addition to these issues of single processor optimization and parallel scMability
of core algorithms, we have to account for unparallelizable and unparallelized code.

This is usually stated in Amdahl's law (1967) which estimates the upper limit of
scalability for a fixed problem size in terms of number of processors that can be
usefully employed to reduce the wall clock time of an application. This limit is
approximately the inverse of the fraction of time taken by the unparallelized code
as measured by running the application on a single processor. As a baseline, for
GEOS-2 DAS the fraction of unparallelized code is 0.006 (Section 2_3), which is an
impressively small number. However the Amdahi's limit on the entire parallel GEOS-2
DAS application is therefore 1./0.006 = 166 processors. The shared-memory parallel
GEOS-2 was not intended to exceed scalabi!ity beyond 64 processors. However, even
an efficient distributed-memory parallelization of the GCM and PSAS would result in
GEOS-2 DAS which does not scale beyond 166 processors. Increasing the resolution of
the tr_msport algorithm, and using mor_ observations will improve scalability because
there is correspondingly more work to distribute among processors. However it is a
fact that, unlike a large portion of modern scientific computing, data assimilation
and earth science modeling do not support rapid change in resolution and problem
size because these changes require extensive and time consuming testing and scientific
validation. From the above discussion, this rather conservative limit can be extended
by focused efforts to parallelize more of GEOS DAS, especially the Interface in Table
I; using optimized parallel libraries and enabling overlapping communications and
CPU if possible; and single processor optimization to reduce the CPU cbst of the
unparallelized code. Some of the implications of these kinds of efforts will be discussed
in the Summary.

5 Summary

We have discussed the computational complexity of the GEOS-2 DAS, which is a
baseline data assimilation system at NASA's Data Assimilation Office in the late
1990s. The complexity of the General Circulation Model (GCM) generally scales lin-
early with the number of spatial grid points, n, per iteration of the algorithm (with
the exception of the quadratic scaling of the radiation algorithms with respect to the
number of vertical levels). The need to reduce the timestep of the dynamics as the

spatial resolution is increased results in an asymptotic (.9(n 4/a) scaling for the dy-
namical core for the simulation of fixed time intervals. The Physical-space Statistical

Analysis System (PSAS) has asymptotic scaling (_9(np) and O(p2). The latter arising
from the solver, Eqn. (5), and the former from Eqn. (6) whose fundamental basis
is the error correlation between all observations and all grid points in an analysis
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cycle. The computational complexity of the PSAS is reduced by increasing matrix
sparsity, s _ 0.4. Other modifications such as multipole methods and reduction in
the analysis cycle time are under research. The computational complexity and the
required computer memory of the KMman filter is quadratic in n. We showed, using
a simple estimate based on the performance of current GCMs, that a Kalman filter
for atmospheric global data assimilation would scale to petaflop/s proportions. We
have developed a reduced spatial dimension version of the Kalman filter suitable for
research on stratospheric constituent gas assimilation where the dynamics are two
dimensional. We've noted that the development of a full, petafiop/s scale, Kalman
filter would be an ambitious and scientific significant exercise, but the main thrust for
practical or operational implementations concentrate on approximate Kalman filters
with reduced computational complexity.

We developed parameterized formulae that estimate the limit to distributed-memory
parallel scalability of the tightly coupled transport and large matrix-vector multipli-
cations which are important components of the CPU time cost of the grid-point GCM
and PSAS. For SGI Origin 2000 and similar computers the scalability is limited to
400 - I000 processors. W_e also point out that reducing the wall clock time of the
GEOS DAS involves large-scale efforts on single processor optimization of approx-
imately 150,000 lines of code. In addition, the unparallelizable and unparallelized
code poses significant limits on the scalability of the end-to-end algorithms. For ex-
ample, for GEOS-2 DAS with distributed-memory parallel GCM and PSAS, the CPU
cost of the unparallelized code measured as a fraction of the whole algorithm (i.e., as
run on a single processor) is only 0.006. This includes I/O and represents by far the
bulk of the lines of code of GEOS-2 DAS. However, the Amdahl's limit of this end-

to-end algorithm would be 1/0.006 = 166 processors. Therefore, efforts to improve
the scalability of GEOS DAS necessarily involve specialized, optimal, parallelization
of a very large number of the 150,000 lines of code (aside from the core transport
and matrix-vector multiply subcomponents), or improving their serial performance.
However, there are not just physical limits to the ability to parallelize interfaces,
initialization procedures, and I/O, but there are practica_ issues related to software
maintenance in a multi-developer and multi-user scientific environment. The serial

code and interfaces undergo rapid simultaneous modification by multiple developers
with requirements to improve scientific algorithms and solidify production suites. In
this environment, drastic efforts to improve the scalability of code must be coordi-
nated with careful oversight that balances scientific requirements and computational
scientific software engineering.
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Appendix A: GEOS-2 DAD System Performance and Through-
pu_

Baseline GEOS-2:2 ° x 2.5 ° x 70 level GCM resolution; 400,000 obs/day

5 days/wallclock day throughput

This corresponds to the baseline operational code

Multitasking GEOS-2 DAD run on 8pe Origin 2000

Main Memory (GB)

Disk (GB)

Mass Storage (OB)

Volume of Data (GB)

Gigaflop/s sustained

Duration of Run

2.2 (per image)

8.0

2300.0 (this is output per year)

6.2 (produced per day per image)

0.25 (per image)

5 days/wallclock day (continuous operation, single image)
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Figure l: Schematic of cycled four dimensional data assimilation.
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Figure 2: Still from the video (HPCC ESS 1997)showing an isosurfaceof constant
methanemixing ratio in the stratosphereproducedby the Kalman filter.
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Data Assimilation algorithms and their parallel implementations are of considerable importance

to Earth Science computational systems for operational as well as research applications.

However, to date there have been few, if any, substantive publications on the complexity of the

algorithms used in these systems. This paper addresses the computational complexity and

scalability of distributed-memory parallel implementations of a number of important algorithms

in use at NASA's Data Assimilation Office. The work has been written for a general scientific

audience, but contains detailed analyses that should be of use to mainline software developers in

Earth Science. We expect that information presented in this work can be used as a starting point

in estimating the requirements for future data assimilation systems, in particular, parallel

implementations using the Message-Passing Interface (MPI). We also expect that this paper can

be used as a starting point for future work on characterizing complexity of advanced methods

and algorithms in data assimilation.

Following a general overview of the algorithms, we presents formulae that may be used to obtain

back-of-the envelope estimates of the number of floating point operations of an implementation

of the Goddard Earth Observing System Data Assimilation System (GEOS-2 DAS) as well as a

Kalman filter that is used to assimilate trace gas measurements. We present the timing profile

(measured as a percentage of CPU time on 8 processors of an SGI Origin computer) for GEOS-2

DAS, and show how this profile is distributed over about half a dozen sub-components of the

large system. The final thrust of the paper is two calculations that estimate the scalability of

distributed-memory parallel implementations of two highly coupled sub-components of GEOS-2

DAS: gridpoint-based transport schemes and large semi-dense matrix-vector multiplications.

We also discuss how Amdahl's law may provide a strong limitation on achieving better

scalability of parallel computational systems due to both "unparallelizable" and "unparallelized"

algorithms. This particularly applies to parallel Earth Science computational systems where

even attempts to change the resolution or the size of the input dataset must be coordinated with

scientific development and validation.




